
Copyright � 1999 W. Eliot Kimber, Steve Newcomb, and Peter Newcomb 185

Version Management as Hypertext Application:
Referent Tracking Documents

W. Eliot Kimber
Senior Consulting Engineer
ISOGEN International, A DataChannel
Company
email eliot@isogen.com
web www.isogen.com, www.datachannel.com

Steve Newcomb
President
ISOGEN International, A DataChannel
Company
email srn@techno.com
web www.isogen.com

Peter Newcomb
President
TechnoTeacher, Inc.
email peter@techno.com
web www.techno.com

ABSTRACT
Presents a methodology for managing and tracking change of
information objects over time that enables efficient and accurate
maintenance and management of links among information objects. This
methodology moves most of the burden of version management from the
storage management layer (e.g., the ‘‘RCS’’ Revision Control System) to
the semantic layer (link management), recognizing that, ultimately, the
decision that a set of information objects represent different versions of the
same logical or abstract object can only be made by a human as a matter
of opinion. RCS (or its equivalent) is still used to maintain version
knowledge, but only on the version management data, not the storage
objects that are themselves versioned. Except as explained below,
something like RCS is just another storage manager.

The purpose of this paper is to outline the basic concepts of a system
design that will guarantee that all references and their valid referents will
remain validly connected together, both mechanically and semantically,
across all versions of all resources in a revision-control-managed technical
information set, at any scale, and at the lowest possible cost over the long
term.

While the implementation approach described uses the facilities of the
HyTime standard, the general approach can be implemented using any
equivalent mechanism, such as the extended form of ‘‘XLink’’ (as
currently drafted).

KEYWORDS
version management; hypertext; change; referent tracking document;
HyTime; XLink; XPointer



W. Eliot Kimber, Steve Newcomb, and Peter Newcomb

186 Markup Technologies ’99

PROBLEM STATEMENT
Many large and complex technical information sets are
subject to constant maintenance, which includes updat-
ing, enhancement, improvement, correction, reorgani-
zation, and expansion. In order to manage constant
change in such a way as to maintain quality, rationalize
workflow, and control costs, such information sets are
usually placed under a software-enforced management
policy often called ‘‘Revision Control’’.

Revision control systems do many different things in
many different contexts, but most revision control sys-
tems, at a minimum, provide a means whereby the evo-
lution of individual information assets can be seen as a
chronological sequence of numbered versions. In other
words, a revision control system allows its users to access
any version of any asset, by means of the name of the
whole sequence of revisions, in combination with the
‘‘version number’’ of the specific desired revision of that
asset. The ‘‘individuality’’ of assets under revision control
inheres in the fact that the whole sequence of revisions
of a ‘‘single’’ asset is addressed by means of the name of
the sequence.

The fact that revision control systems make many
revisions appear to be a single abstract asset causes con-
fusion for owners and maintainers of complex technical
information sets in which there are many cross-refer-
ences, traversable hyperlinks, and re-used components.
All such references necessarily refer to information in
particular revisions, not to all revisions in general. Fur-
thermore, at any given moment in the revision history
of a set of resources, a given referent may jump from one
abstract asset to another. Keeping all references in work-
ing order from one release to the next has become one
of the most perplexing, embarrassing, and expensive
problems in the information management industry. Up
to the present time, no out-of-the-box document man-
agement solution has addressed the problem adequately,
much less optimally.

The act of creating information necessarily involves
the change over time of the information as it is revised
and updated over its life. This is the general problem of
change management or version management: the main-
tenance of multiple versions of a given abstract infor-
mation object and the maintenance of the version-to-ver-
sion relationships of those objects. (For the purposes of
this discussion, the term ‘‘information object’’ means
any uniquely-addressable bit of information, from a sin-
gle character to an entire storage object [e.g., XML doc-
ument]. This paper limits its scope to data stored using
XML syntax to keep the discussion as simple and focused
as possible. However, nothing in this paper is necessarily
limited to the management of XML-based data—it can
be applied to data of any sort stored in any manner, given
appropriate addressing facilities.)

Before computers, version management was merely

a matter of keeping good files, that is, keeping each new
physical copy, labeling it properly, and storing it in such
a way that its relationship to other parts was clear (or at
least determinable). ‘‘Documents’’ were well-defined
sets of pieces of paper with reasonably obvious bound-
aries and relationships to each other. Various simple and
obvious binding and collecting techniques could be used
to keep the parts of a document together and clearly
distinguish them from the parts of other documents. To
lose a version of a document one had to physically de-
stroy or misplace the paper itself, otherwise the version
would persist until the paper (or sheep skin or mud tab-
lets) decayed into oblivion. Version-to-version relation-
ships were normally only maintained at the document
level—determining and tracking changes at the com-
ponent level was limited largely to scholarly analysis and
legal documents.

With the advent of computers and computer-based
document processing, the version management problem
appeared to get much more difficult. While computer
files are physical objects (magnetic states in metal parti-
cles, pits in aluminum films, etc.), they are much easier
to destroy than paper documents. The typical use of
computers sees one overwriting old versions of files with
new versions whenever the new version is saved from the
editor. The ability of computers to represent and manip-
ulate complex structures made it possible to track
changes in the details of these structures in a way that
had huge potential benefit. The advent of hypertext
turned documents from singular, informal things into
complex systems of interconnected and interdependent
information objects that must be formal and precise in
order to function properly. The advent of hypertext also
raised the specter of creating references to objects that
may not exist in their current form forever. The ability
to relate individual components of different versions to-
gether brought with it the overhead of tracking the re-
lationships themselves.

Essentially, computers created a situation in which it
is necessary to distinguish the management of storage
objects from the management of the abstract semantic
objects they contain. In a purely paper-based environ-
ment, there is no useful distinction between the physical
and abstract because the physical is all there is. In a com-
puter, there is a clear and vital distinction between the
physical storage (e.g., a stream of bytes or string of char-
acters) and the abstractions they represent (e.g., XML
elements). To manage computer-based data completely
it is necessary to manage both the physical instantiations
and the abstractions.

To date, no system of which the authors are aware
has solved the version management problem in a com-
pletely satisfactory way. In particular, there has been no
satisfactory way to manage relationships along with stor-
age objects. The approach defined in this paper attempts
to satisfy both base storage object version management



Version Management as Hypertext Application: Referent Tracking Documents

Markup Technologies ’99 187

and relationship version management as completely as
possible by adding to existing storage object manage-
ment a technique for managing the relationships among
the semantic (abstract) objects inherent in the storage
objects. The approach uses and depends on storage-ob-
ject versioning systems like RCS to manage the identity
of and access to logical objects. It does not require the
use of systems like RCS to manage versions of other stor-
age objects but it does not preclude their use either. The
only requirement is that every version of a storage object
be maintained and be separately addressable. Whether
this requirement is satisfied by creating a new file name
for each storage object version or through the use of a
system like RCS is irrelevant to our approach, although
it may have profound practical implications for imple-
mentations.

The traditional approaches to version management
can be grouped into the following classifications:

Latest version only In this approach, only the latest
version of a given storage object (and thus the com-
ponents of the storage object) are maintained for-
mally (although older versions may be maintained
for some period of time as a side effect of backup
policies, for example). This is the normal operating
mode for most computer users, who blithely over-
write their old versions at the end of editing sessions.
This approach clearly does not solve the version
management problem. This approach produces a
system that has no past, only a present. This type of
system is typified by personal computer office sys-
tems and Web sites, where there is no standardized
or conventionalized way of storing and referring to
older versions of objects.

Storage object name discipline In this approach,
new versions of documents are stored with new file
names, usually using some sort of naming discipline
that defines or implies the time-dependent relation-
ship of one file to another (e.g., mydoca.xml,
mydocb.xml, etc.). This approach has the advantage
of not throwing away the past and therefore main-
taining old versions indefinitely. It has the disadvan-
tage that it requires knowledge of the naming dis-
cipline (if there is one) and consistent application
of the discipline. It is also at the mercy of human
error and laziness. This approach cannot always
clearly represent the division or combination of stor-
age objects except through the use of fairly sophis-
ticated naming disciplines. It is incapable of repre-
senting the version relationships of components of
storage objects. Data managed this way may not be
interchangeable across different operating systems
or file systems due to limitations in the file naming
facilities of different systems. For example, a Unix-
style discipline like mydoc.sgm.0.1 cannot be reliably

translated to an MSDOS system. This approach is
satisfactory for managing relatively stable systems of
storage objects, as demonstrated by its use in man-
aging UNIX storage objects for many years, but is
not adequate by itself to solve the version manage-
ment problem.

Storage-object delta-chain managers In this ap-
proach each new version of a given storage object is
differenced against the previous version and only the
differences are stored. This type of system is typified
by the GNU Revision Control System (RCS). Systems
of this type do an excellent job of storing storage
objects so that different time-specific versions can be
easily accessed, but they do nothing to relate differ-
ent versions of their components together (except
to the degree that such relations can be inferred by
examining the differences between two versions).
These systems are essentially optimized storage man-
agers that minimize the amount of space used to
store different time-specific versions of the same
storage object. This is a very useful facility, and, as
will be discussed later, critical to efficient version
management, but it does not, by itself, solve the ver-
sion tracking problem, especially with respect to re-
lationships among data components. For example,
RCS (and Concurrent Versioning System [CVS], a
more complete data management system built on
top of RCS) cannot track the fact that one storage
object at time T(0) is split into two new storage ob-
jects at time T(1). It also cannot track that elements
A and B at time T(0) are combined into single ele-
ment C at time T(1).

Element managers In this approach XML docu-
ments are managed at the element level by making
each element an object. This type of system is typi-
fied by Chrystal’s ‘‘Astoria’’ product. These systems
provide version tracking by maintaining versions of
each object within the repository. They do essentially
the same thing as delta-chain storage object man-
agers, but at the element level rather than at the
document (storage object) level (or, if you prefer,
they treat each element as a separate storage object).
This approach works as long as all modification of
documents is done through the repository so that it
has knowledge of the modifications. However, if an
export-change-import model is used, there is no way,
in the general case, for the system to reliably relate
the elements in one version of a document to the
elements in the new version. Even if the system em-
beds some sort of markers into the data on export,
there is nothing to prevent their modification or re-
moval during the editing process because it occurs
outside the control of the repository. Thus, these re-
positories are essentially persistent editors (persis-
tent in the sense that their internal representation



W. Eliot Kimber, Steve Newcomb, and Peter Newcomb

188 Markup Technologies ’99

of the original XML documents is made persistent,
with the data never reconstituted into XML except
for export out of the repository). This type of re-
pository also has the problem that the overhead for
each object is high and must be present even when
many, if not most, of the elements are of no interest
from a version management perspective (either be-
cause they have not changed or because their
changes are not significant to the data owner). One
solution, which is to limit the level at which elements
are decomposed, also limits the ability to track ele-
ment-level versions. While systems of this type are
useful as persistent editors, they also fail to solve the
version management problem.

In-line version representation In this approach, the
representation of different versions of an informa-
tion object is done within the information object it-
self, that is, using some syntactic feature of the data
representation syntax, such as marked sections (in
SGML), paired processing instructions, or elements.
This approach has the advantage that it is not de-
pendent on specific software or hardware and, be-
cause its use is controlled by the author, only those
changes that are significant and at the granularity
that is most useful or appropriate need be reflected.
This approach has the disadvantage that it adds sig-
nificant overhead to the data itself, often swamping
the volume of core data with version representation
information. It also increases the processing over-
head for all users of the information, regardless of
which version or versions they are interested in.

This approach is fundamentally a special case of
the more general problem of applicability, which is
the definition of the conditions to which a particular
information object applies. While many applicability
management approaches can also solve the version
management problem, version management is usu-
ally seen as being a separate domain from other uses
of applicability, such as relating information objects
to specific operating platforms, part numbers, or
user categories. In general, the version applicability
of an information object is orthogonal to any other
applicability it may have. Another flaw is that, like
delta management, most in-line version representa-
tion approaches (certainly those that are easily au-
thorable) cannot represent the splitting of a single
storage object into multiple objects.

Thus, no existing XML version management ap-
proach succeeds in completely solving the version man-
agement problem, although many, if not all, solve parts
of the problem well enough to be useful in particular
circumstances. To be completely satisfactory, a version
management system must do the following:

1 Maintain all versions of storage objects such that no

data is ever destroyed except by explicit choice of
the data owner.

2 Provide a facility for identifying and referring to ab-
stract things independent of their locations in par-
ticular storage objects.

3 For each abstract thing, relate the versions in time
of the thing so that any or all versions can be ac-
cessed

ASSUMPTIONS AND GIVENS
The following are assumptions or givens on which our
version management approach depends.

The storage object (e.g., file, document entity) is the
fundamental unit of storage. All data access is through
storage objects, i.e., the names of storage objects consti-
tute the global name space that is the basis of all physical
addressing.

Once created, a storage object is static and immu-
table. That is, there is no sense in which a storage object
can change, any more than a printed page can change.
This assumption does raise certain existential questions
about what constitutes a ‘‘change’’ and what does ‘‘the
same’’ mean, but for the practical purposes of version
management, we choose to leave those existential ques-
tions to philosophers. For our purposes here, one per-
fectly usable definition of ‘‘change’’ is ‘‘any activity
whose effect alters the checksum of the storage object.’’
(In some situations, of course, this definition may be in-
sufficiently sophisticated.) The assumption of storage ob-
ject immutability makes the system simpler and makes
version management tractable.

Storage objects have identity in space and time (they
must be unalterably bound to their creation times). This
is a recognition of the fact that storage objects are, ulti-
mately, physical things and therefore have all the quali-
ties of physical things, then most important of which are
identity in space and time. Storage objects are physical
things because they exist on storage media as physical
things, such as magnetic field domains or pits in alumi-
num film or holes in long strips of paper. This means
that a given storage object can exist in only one place at
any given point in time. If you copy a storage object, you
have two distinct storage objects. That you may consider
them to be ‘‘the same’’ is a policy that you impose. Thus,
when people ask ‘‘Do you have the file?’’ they are really
asking ‘‘Do you have a copy of the file?’’.

This idea of ‘‘one thing one place’’ can be taken a
bit farther to say that one important aspect of a storage
management system is that it provides the complete and
dependable illusion that a given storage object really
does exist in only place, even though it may actually be
copied or mirrored in several places. In the ideal world,
every storage object would have exactly one storage lo-
cation that was always reachable from anywhere in ‘‘the



Version Management as Hypertext Application: Referent Tracking Documents

Markup Technologies ’99 189

network’’ (where ‘‘the network’’ is whatever scope of ac-
cess is of interest, from the network of computers in your
home to the Internet). The World Wide Web provides a
taste of this ideal where it would be possible for every
computer (and thus every storage device) to be on the
net and every file to exist in exactly one place. Of course
practical realities make this naive view impossible. Huge
effort has gone into solving the problem of making dis-
tributed systems appear to be single computers and this
effort shows that it is possible to build a system in which
the practical details of data storage can be hidden so that
it can appear to users of the system that things exist in
exactly one place even though they may actually be cop-
ied on many physical systems. For the purposes of this
paper, we do not distinguish between a simple single-
computer file system on a single hard disk and a highly
sophisticated distributed file system such as are often
used for high volume, high traffic Web sites. Our ap-
proach can be used on the former without difficulty and
depends on the latter to provide scalability. That is, our
approach treats file systems, however implemented or
distributed, as consistent services that provide access to
files that are, as far we can tell, single physical objects,
even if there are more layers of abstraction under the
covers that we cannot see.

CHANGE IS AN ILLUSION
When we use an editing tool like Emacs or Notepad or
Microsoft Word� we normally say that we are ‘‘chang-
ing’’ the document we are editing. However, this is a fic-
tion very much like the fiction that movies actually con-
sist of moving pictures.

When you create a storage object (e.g., a file), it is
static and unchanging. It has identity in that you can
distinguish it from all other files on your system (or any
other system anywhere in the universe). If you bring that
file into an editor, you are really copying the file’s data
into the local storage space of the editor (its ‘‘memory’’)
and manipulating that copy. If you save the data using
the filename of the original file you have not changed
the original file. Rather, you have destroyed the original
and replaced it with the new copy. This is exactly analo-
gous to pulling a paper document from a file, retyping
it onto new pieces of paper, burning the original, and
putting the new copy back in the file—there is no evi-
dence that the original copy ever existed and no hope
of getting it back.

If, by contrast, you saved the new copy with a new
file name, the original copy is undisturbed and continues
to exist. As long as you don’t explicitly delete the original
copy it will always be available, in its exact current state
until the end of time. By the same token, the new copy,
once saved to a file, becomes constant and immutable.

Note that, at the level of pure data storage mechan-
ics, there is absolutely no difference between creating a

copy of a file that is considered to be a new version in
time and creating a copy of a file that is considered to
be a distinct ‘‘document’’. It is impossible, in the general
case, to distinguish these two forms of copy simply by
looking at the storage objects themselves—there must be
some separate indicator of the version relationships,
whether it is the use of particular filenames, the storage
of the new copy in a particular RCS archive, or the use
of an explicit hyperlink that relates the two versions.

Note further that the idea of ‘‘document’’ as a logi-
cal thing (as opposed to ‘‘document’’ as defined by the
XML and SGML standards) is a subjectively applied clas-
sification of information objects. For example, the paper
you are reading now is one instantiation (of many) of
the idea of a paper on the subject of using hyperlinks to
represent versions. The paper you are reading is no more
‘‘the document’’ than any of the various earlier drafts
were. Even more, it is a matter of differing opinion as to
what physical things constitute versions or components
of this paper over time. Clearly, the idea of ‘‘document’’
is a highly perspective-driven thing. No existing version
management approach is capable of fully representing
the complexity of a document like this paper that was
developed in many media by different people in differ-
ent ways.

Every storage object has identity—this is a funda-
mental and necessary property of storage objects (and
objects in general). This also means that every storage
object exists in exactly one place at exactly one time—if
you create a copy of a storage object and all you do is
change its storage location (but change no other prop-
erties, including its recorded creation date), it is still a
different storage object, even if you consider it to be ‘‘the
same’’ as the original.

Thus, change is an illusion or fiction that obscures
the true nature of the way we tend to manage data, which
is to throw away old versions. It also means that change,
or rather, the representation of change over time, is a
function of assertions made about sequences of storage
objects over time and not an inherent property of the
storage objects themselves. Operating systems could pro-
vide built-in facilities for relating storage objects together
to assert version relationships, but few do. In any case,
such facilities would not address the requirement to as-
sert version relationships among the semantic compo-
nents of storage objects (e.g., between elements in dif-
ferent documents).

MANAGING HYPERLINKS OVER TIME
When documents are standalone objects (like pieces of
paper), the full difficulty of version management is not
encountered. However, when documents are actively
linked to each other, they become an interdependent
system of objects and serious version and information
management problems are exposed.



W. Eliot Kimber, Steve Newcomb, and Peter Newcomb

190 Markup Technologies ’99

One commonly-cited problem with hypertext is the
‘‘broken link’’ problem. This is the problem whereby a
link that worked at time T(0) no longer works at time
T(1) because one or more anchors of the link no longer
exist at their former locations.

From the foregoing discussion of storage objects and
versions it should be clear that this problem is caused by
throwing away old versions of documents. If the versions
created and linked at time T(0) continue to be accessi-
ble, then the links to their components cannot be bro-
ken. If, at time T(1) you throw away the original docu-
ments and replace them with new copies, you have
committed a fraud, substituting a false, unexpected, un-
wanted thing (the T(1) versions) for the original, true,
known things (the T(0) versions). This type of behavior
can only lead to pain and frustration, when attempting
to maintain hyperlinks to the components of the T(0)
versions.

Link breakage is a problem for which the solution is
easy: never throw anything away. This solves the physical
problem of maintaining referential integrity within the
data set (once established). However it doesn’t solve the
practical problem of how to react to change.

The real problem is that for every reference within
a system of information objects, when a new version of
any storage object in the system is created a decision
must be made as to how to react to this change. For each
reference to a given information object for which there
is a new version there are three possible decisions:

1 The new version is of no interest and no reaction is
necessary; the reference is unchanged.

2 Create a new version of the reference that only
points to the new version

3 Create a new version of the reference that points
both to the original version and to the new version

All three decisions are equally reasonable and will
be appropriate depending on the nature and use of the
information and the general policies in effect. For ex-
ample, a brief for a person accused of a crime committed
20 years in the past must point to the version of the law
in effect at the time of the crime, whereas a police policy
related to such cases must point to the latest version of
the law, and scholarly commentary on the relevant body
of law must point to both (or, potentially, all) versions in
order to explain how and why they have changed over
time.

Clearly no generally useful version management sys-
tem can impose one of these three policies—it must al-
low any choice. It would probably be useful if it opti-
mized access to the latest version as that is usually (but
not always) the most common policy.

This problem is compounded by the use of mean-
ingful names for storage objects where the name itself
becomes imbued with value and thus becomes more im-

portant than the data it happens to identify at any given
time. For example, the name ‘‘http://www.techno.com/
index.html’’ is a reference to the index.html file that is
the root of the Techno.com Web site. If the ‘‘never throw
anything away’’ policy was instituted on the Techno.com
Web site, when you went to the above name you’d get
the first index.html file they ever created—by necessity
each later version would have a different name. This sug-
gests that there is a class of information objects that need
only have a present and not a past or that, rather than
giving the new version a new name, the old version is
given a new name and the new version gets the old name.
This is roughly analogous to recording a broadcast tele-
vision program: the original broadcast can only be ac-
cessed once: it exists at a precise point in time that, bar-
ring time travel, can only be seen once. However, a
recording of the broadcast can be accessed many times;
the act of recording the program is equivalent to copying
a file to a new location (and thus giving it a new name).

REPRESENTING VERSION-TO-VERSION
RELATIONSHIPS
If the fact that two information objects represent ver-
sions in time of some abstract, logical object is an opin-
ion, then it follows that the representation of version
relationships is appropriately done with hyperlinks, be-
cause the primary purpose of hyperlinks is to assert and
represent opinions about the relationships among
things. Furthermore, these links must, by necessity, be
completely separate from the storage objects and data
elements they relate; otherwise new opinions about ver-
sions could not be stated without also changing the stor-
age objects about which the opinions were being stated.
While the benefits of this approach are significant even
when applied to a single data type such as XML, given
an addressing mechanism that can address anything, the
approach can be applied to data of any and all types.

The HyTime architecture defined in the HyTime
Standard (ISO/IEC 10744:1997) provides just such a hy-
perlink and addressing mechanism. The methodology
presented here takes advantage of these facilities as an
implementation approach. However, the approach can
be implemented using any linking and addressing mech-
anism that has the same characteristics. XLink and
XPointer could be used, although the potential solution
would not necessarily be as flexible or all-encompassing
(but it would be sufficient to implement this approach
at least within an XML-only environment). One limita-
tion of XLink today is that the XPointer addressing
method is only defined for the addressing of XML doc-
uments—it cannot be used in any standards-conforming
way to address components of non-XML data. This is a
deficiency in the way that the XPointer semantics are
specified, not an inherent limitation in the XPointer
mechanism. That is, if XPointers were defined in terms



Version Management as Hypertext Application: Referent Tracking Documents

Markup Technologies ’99 191

of operations on a generic, specializable data model,
they could then be applied to any data type described
using that generic model. Because the HyTime semantics
are defined in terms of such a generic data model,
HyTime syntax and semantics can be applied to data of
any type.

The key problem is the creation of representations
of abstract things that are the intended targets of refer-
ences such that a reference to a single, unchanging name
over time enables the addressing of the set of semantic
objects that make up the thing at any point in time, pres-
ent or past.

The abstract things are called ‘‘referents’’ in this de-
sign. Each referent is represented by a single storage ob-
ject (file) which is a single XML document consisting of
a single hyperlink. This hyperlink points to all the se-
mantic components that make up the referent. These
documents are called ‘‘referent tracking documents’’
(RTDs) because they bind time-specific versions of ref-
erents to their component objects and track them as they
change over time. The filename of the RTD serves as the
persistent name of the referent over time. Each RTD is
managed over time as a single revision chain in RCS or
its functional equivalent. Any time-specific version of a
referent can be determined by retrieving the appropri-
ate time-specific version of the referent’s RTD document
from the RCS archive.

To illustrate the mechanism, we start with the follow-
ing two XML documents, doc001.xml and doc002.xml,
which are documents being developed by some set of
human authors. Document doc001.xml:

<?xml version�"1.0"?>

<!DOCTYPE doc SYSTEM "doc.dtd">

<doc><p>See thing one.</p></doc>

Document doc002.xml:

<?xml version�"1.0"?>

<!DOCTYPE doc SYSTEM "doc.dtd" []>

<doc>

<p id�"e001">This is all about thing one.</p>

</doc>

At time T(0), the two documents are not explicitly
connected, although the author of doc001.xml appears
to intend a reference to doc002.xml.

At time T(1), the author of doc001.xml creates a new
version, doc001-1.xml, and adds an explicit hyperlink to
the element ‘‘e001’’ in document doc002.xml:

<?xml version�"1.0"?>

<!DOCTYPE doc SYSTEM "doc.dtd" [

<!NOTATION xml SYSTEM

"http://www.w3.org/TR/1998/REC-xml-19980210">

<!ENTITY doc002 SYSTEM "doc002.xml" NDATA xml>

]>

<doc>

<p>

See <xref target�"e001" doc�"doc002">thing

one</xref>.

</p>

</doc>

The storage object that contains the target element
has been declared as an external unparsed entity. The
attributes of the ‘‘xref’’ element bind the element ID
(‘‘e001’’) to the entity (doc002) to establish the com-
plete address of the desired target element. (This could
also have been done with a single URL ala XLink. The
HyTime-defined syntax is used here in part to emphasize
the distinction between the storage object part of the
address and the element ID part of the address. There
is no functional difference between the syntax used here
and the equivalent XPointer-based URL.)

Note that this example uses a direct, hardened ref-
erence from the first document to the second.

At time T(2) a new version of doc002.xml,
doc002-1.xml, is created:

<?xml version�"1.0"?>

<!DOCTYPE doc SYSTEM "doc.dtd" [

]>

<doc>

<p id�"e001">

This is all about thing one.

</p>

<p id�"e002">

This is all about thing two.

</p>

</doc>

Note that the reference made from document
doc001-1.xml is still pointing to doc002.xml and does not
reflect in any way the new document doc002-1.xml. At
this point the author doc001-1.xml has to make a choice:
do nothing and continue to point to doc002.xml, create
a new version that points to doc002-1.xml, or create a
new version that points to both doc002.xml and
doc002-1.xml. At time T(3) the author decides on the
second option, creating document doc001-2.xml:

<?xml version�"1.0"?>

<!DOCTYPE doc SYSTEM "doc.dtd" [

<!NOTATION xml SYSTEM

"http://www.w3.org/TR/1998/REC-xml-19980210">

<!ENTITY doc002-1 SYSTEM "doc002-1.xml" NDATA xml>

]>

<doc>

<p>

See <xref target�"e001" doc�"doc002-1">thing

one</xref>.



W. Eliot Kimber, Steve Newcomb, and Peter Newcomb

192 Markup Technologies ’99

</p>

</doc>

At this point, the original referencing document has
been updated to react to the change in its target. Both
versions of document doc001.xml maintain referential
integrity. However, there are two problems. First, there
is nothing in this system of documents that relates any
of these documents together as being versions of each
other. Second, there is nothing that formally establishes
the relationship of the element ‘‘e001’’ in doc002.xml
and element ‘‘e001’’ in document doc002-1.xml. The
fact that they have the same ID value is mere coincidence
and is not a necessary condition. For example, at time
T(4) the author of doc002-1.xml could make this
change, creating new document doc002-2.xml:

<?xml version�"1.0"?>

<!DOCTYPE doc SYSTEM "doc.dtd" [

]>

<doc>

<p id�"e002">

This is all about thing one.

</p>

<p id�"e001">

This is all about thing two.

</p>

</doc>

The IDs of the two paragraphs have been swapped
(perhaps because the author started to rearrange the or-
der of the paragraphs by swapping the contents of the
two paragraphs and then decided to put things back by
simply reordering the paragraphs, forgetting about the
original ID assignments, an easy thing to do when editing
tools hide details like element IDs). The author of
doc001-2.xml now has to make the same decision as be-
fore and the mechanics of reacting to it are the same—
the change in the element IDs does not affect the process
(after all, what’s important is the content of the thing
referenced, not its arbitrary identifier).

Again, there is no explicit relation between the dif-
ferent versions of the referent of the cross reference.
While the referential integrity of the information has
been maintained, the tracking and management of it
over time has not been enabled.

Replaying the same scenario using referent tracking
documents produces the following result. We start at the
same time T(0) with two documents that are not yet ex-
plicitly linked.

At time T(1), the author of doc001.xml creates a new
version, doc001-1.xml, and adds an explicit hyperlink to
the element ‘‘e001’’ in document doc002.xml, but in-
stead of creating a direct reference, the system creates a
referent tracking document to represent the intended

target of the reference. This reference tracking docu-
ment, rtd001.xml, looks like this:

<?xml version�"1.0"?>

<!DOCTYPE referent SYSTEM "rtd.dtd" [

<!ENTITY doc002 SYSTEM "doc002.xml" NDATA xml>

]>

<referent members�"m001">

<title>Thing one</title>

<nmsploc id�"m001" locsrc�"doc002"

namespc�"elements">e001</nmsploc>

</referent>

The document element is a hyperlink pointing to
element ‘‘e001’’ in document ‘‘doc002.xml’’. The
‘‘nmsploc’’ element is a HyTime indirect location ad-
dress that translates the local ID ‘‘m001’’ (first member)
to the element ‘‘e001’’ in the document ‘‘doc002’’. This
indirection is introduced here because it is absolutely
required when the referents are in separate documents
or the referent is addressed in a different way. (The
XLink equivalent would be an extended link with two
locator subelements that have the same value for their
‘‘role’’ attributes.)

The rtd001.xml document is checked into its RCS
repository, becoming version 1.1 according to RCS’ ver-
sioning numbering scheme. The ‘‘-u’’ option of the RCS
‘‘ci’’ command is used to maintain the latest copy of the
file on the file system for convenience.

The document doc001-1.xml now looks like this:

<?xml version�"1.0"?>

<!DOCTYPE doc SYSTEM "doc.dtd" [

<!NOTATION xml SYSTEM

"http://www.w3.org/TR/1998/REC-xml-19980210">

<!ENTITY rtd001 SYSTEM "rtd001.xml" NDATA xml>

]>

<doc>

<p>

See <xref target�"rtd001">thing one</xref>.

</p>

</doc>

Now, instead of pointing directly to the doc002.xml
document, the cross reference points to the referent
tracking document ‘‘rtd001.xml’’, which, by the rules of
HyTime, is interpreted as a pointer to the ‘‘referent’’
element itself. Being a hyperlink, the referent element
then enables navigation to the members of the referent,
in this case the single element ‘‘e001’’ in document
‘‘doc002.xml’’. The key here is that the pointing is to the
referent tracking document by file name, which will be
persistent for the life of our information system.

The referent tracking document ‘‘rtd001.xml’’ now
formally represents the logical or abstract thing the au-
thor of document doc001-1.xml intended the cross ref-



Version Management as Hypertext Application: Referent Tracking Documents

Markup Technologies ’99 193

Figure 1 Connection between Source and Target of Link Through Referent
Tracking Document

Figure 2 New Version of RTD Reflecting New Version of Referent

erence to point to. It essentially provides a physical proxy
for the idea of, in this case, ‘‘stuff about thing one’’. The
RTD shown is very simple, but it could of course be made
more sophisticated, for example, containing descriptive
metadata about the referent as an abstract idea.

To continue the scenario: at time T(3) the author of
doc002.xml creates a new version, doc002-1.xml, to add
information about thing two:

<?xml version�"1.0"?>

<!DOCTYPE doc SYSTEM "doc.dtd" [

]>

<doc>

<p id�"e001">

This is all about thing one.

</p>

<p id�"e002">

This is all about thing two.

</p>

</doc>

By some process not yet defined, the system deter-
mines that document doc002-1.xml is in fact a new ver-
sion of doc002.xml and determines that the element
‘‘e001’’ should be used as the member of this version of
the referent rtd001.xml. The system creates a new ver-
sion of rtd001.xml to reflect this:

<?xml version�"1.0"?>

<!DOCTYPE referent SYSTEM "rtd.dtd" [

<!ENTITY doc002-1 SYSTEM "doc002-1.xml" NDATA xml>

]>

<referent members�"m001">

<title>Thing one</title>

<nmsploc id�"m001" locsrc�"doc002-1"

namespc�"elements">e001</nmsploc>

</referent>

This document is checked into the rtd001.xml ar-
chive, becoming version 1.2. Again this latest version is
maintained on the file system for convenience.

At this point, the author of document doc001-1.xml
must make a decision: do nothing and, by default, point
to the new version of the referent (element ‘‘e001’’ in
document doc002-1.xml) or refer to a specific version or
versions of the referent tracking document in order to
continue to point to a specific version or versions of the
referent.

At this point, the value of the referent tracking doc-
ument should be clear: it protects references from the
creation of new versions of referents when the desired



W. Eliot Kimber, Steve Newcomb, and Peter Newcomb

194 Markup Technologies ’99

Figure 3 RTD Describing Referent Distributed Across Multiple Documents

result is to point to the latest version. It also serves to
explicitly bind different versions of the referents to-
gether through the use of RCS to both maintain the dif-
ferent versions of the RTD document and to formally
relate them in time.

The use of RCS for the referent tracking documents
has another important aspect: it enables accurate recre-
ation of the state of the system at any given point in time.
Assuming that all storage objects are accurately bound
to their creation time, the system can be queried to re-
turn only those storage objects in existence at a partic-
ular point in time, including the corresponding versions
of referent tracking documents. Essentially, the time to
be recreated is specified as a parameter to the RCS check
out command.

The scenario as developed so far formally relates the
two versions of the ‘‘thing one’’ referent but does not
formally relate the different versions of the referencing
document. This is easy to do simply by creating an RTD
for document doc001, rtd002.xml. The initial version of
this RTD document would be:

<?xml version�"1.0"?>

<!DOCTYPE referent SYSTEM "rtd.dtd" [

<!ENTITY doc001 SYSTEM "doc001.xml" NDATA xml>

]>

<referent members�"m001">

<title>doc001</title>

<nmsploc id�"m001" namespc�"entities">

doc001</nmsploc>

</referent>

Version 1.2 of this RTD document would be:

<?xml version�"1.0"?>

<!DOCTYPE referent SYSTEM "rtd.dtd" [

<!ENTITY doc001-1 SYSTEM "doc001-1.xml" NDATA xml>

]>

<referent members�"m001">

<title>doc001</title>

<nmsploc id�"m001" namespc�"entities">

doc001-1

</nmsploc>

</referent>

Likewise, the same would be done for document
doc002.

At this point, we now have a complete system in
which every ‘‘important’’ object (that is, objects we do
or might want to reference) is described by a reference
tracking document, providing a single, consistent mech-
anism for reference and access to arbitrary versions of
documents. However, the scenario has not yet presented
a case that would not have been satisfied by simply using
RCS for all three documents. This case is the one in



Version Management as Hypertext Application: Referent Tracking Documents

Markup Technologies ’99 195

which the original referent is split across two or more
storage objects.

At time T(4) the author of doc002 decides to split
the document into two separate documents and spread
the discussion of thing one between them. This creates
a new document, doc003:

<?xml version�"1.0"?>

<!DOCTYPE doc SYSTEM "doc.dtd" [

]>

<doc>

<p id�"e004">

The Cat brought some friends,

Thing One and Thing Two. Thing

One was by far the more destructive.

</p>

</doc>

The RTD for thing one is revised to reflect this
change:

<?xml version�"1.0"?>

<!DOCTYPE referent SYSTEM "rtd.dtd" [

<!ENTITY doc002-1 SYSTEM "doc002-1.xml" NDATA xml>

<!ENTITY doc003 SYSTEM "doc003.xml" NDATA xml>

]>

<referent members�"m001 m002">

<title>Thing one</title>

<nmsploc id�"m001" locsrc�"doc002-1"

namespc�"elements">e001</nmsploc>

<nmsploc id�"m002" locsrc�"doc003"

namespc�"elements">e004</nmsploc>

</referent>

At this point, the RTD is able to represent the dis-
tribution of the members of referent thing one across
two documents. Neither RCS nor any single-file version
management system could represent this distribution. It
is also important to remember that the RTD is relating
semantic components together, while the storage object
versioning system is relating storage objects together.
You need both forms of relation in a complete system.

THE PROBLEM WITH EDITING
In the foregoing scenario, the mechanism by which the
system knows what the different versions of the referent
‘‘thing one’’ are is intentionally left undefined. This is
because there is no reliable way to do this that does not
involve humans explicitly stating what things are versions
of what. This is because of what might be called the ‘‘ed-
iting problem.’’

The basic problem is that of tracking the details of
changes made during an editing session. There does not
appear to be a general solution to this problem, al-

though the fact that SGML and XML documents have
rich structure does hold some promise for the use of
structure-aware differencing that can make reasonably
accurate inferences about how things have changed and
what the correlation between information elements in
two versions are. Unless every user action is journaled
through an editing session, there is no reliable way to
know how some original thing was transformed through
the editing process. Even when actions are journaled, it
may still be impossible for a computer, lacking under-
standing of the meaning of the information, to accu-
rately deduce a true change. This means that in the gen-
eral case it will always be necessary for the humans
involved to state what the version-to-version relationships
are.

Note also that there is a difference between simply
identifying things that are new or changed and relating
objects in one version to specific objects in another ver-
sion. Identifying changes is well solved by existing dif-
ferencing technology (although there are subtleties hav-
ing to do with the distinction between purely syntactic
changes, many of which may have no semantic signifi-
cance, and changes that are truly significant). Relating
changes across versions requires either sophisticated
tracking of editing actions through an editing session or
human identification of changes.

From a practical standpoint, there are several things
that can be done to brighten this picture a little. First,
element identification conventions can be enforced such
that the same logical thing should have the same ID in
all versions of the document that contains it. This allows
computers to make a reasonably accurate and reliable
guess about versions, although it cannot solve the prob-
lem completely. This approach can be further aug-
mented by using indirect addressing within documents
to explicitly state relations and maintain ‘‘persistent’’ IDs
for things as they are reorganized over time. This adds
another level of indirection beyond that provided by the
RTDs themselves.

Another potential aid is to require each author to
examine the RTDs that refer to things in the documents
that author controls and is editing and to adjust them as
necessary.

Note also that it is not generally necessary to create
RTDs for all things that might be referenced. It is only
necessary to have RTDs for those things that are actually
referenced. It is also possible to create RTDs for older
versions after the fact by synthesizing RCS archives for
the RTDs that reflect the appropriate creation times.

FORMAL DEFINITION OF THE REFERENT
TRACKING DOCUMENT VERSION
MANAGEMENT SYSTEM
This section formally defines the components and con-
ventions of the referent tracking document version man-



W. Eliot Kimber, Steve Newcomb, and Peter Newcomb

196 Markup Technologies ’99

agement system. In this description, the term ‘‘infor-
mation system’’ means a system of related information
objects that are maintained as a unit for some non-trivial
period of time. The RTD mechanism does not define or
constrain how these information objects are individually
stored or managed.

The essential components of the RTD system are:

1 For each ‘‘thing of interest’’, a single referent track-
ing document (RTD), managed as a single sequence
of storage object versions using RCS or its equiva-
lent. The storage object identifier for the RTD is
constant with respect to the ‘‘thing of interest’’ for
the life of the information system.

2 The content of the referent tracking document is a
single hyperlink that serves to aggregate the seman-
tic objects that make up a time-specific version of a
single thing of interest. In HyTime terms, this hy-
perlink is an ‘‘aggregation link’’ (agglink). Because
this link may aggregate multiple semantic objects, in
XLink it must be represented using an extended link
where the link element is one resource role and all
other resources are the same role (e.g., ‘‘members’’,
following the definition of the HyTime agglink link
type). The RTD’s hyperlink may have any content or
attributes desired beyond those required to establish
the base aggregation relationship. Good practice is
to have some sort of title or descriptor that describes
the thing of interest for the benefit of humans using
the information system.

3 For each new version of the thing of interest, a new
version of the thing’s RTD is created reflecting the
new constituents of the thing.

4 By default, unqualified references to RTDs are ref-
erences to the latest version of the RTD, and there-
fore to the latest version of the thing of interest the
RTD represents.

5 The system must provide facilities for referring to
time-specific versions of RTD (and therefore, to
time-specific versions of the things of interest that
the RTDs represent). This could be through the use
of formal system identifiers or, in an XLink context,
through some form of URL that addresses time-spe-
cific versions of RTD documents (possibly using fa-
cilities based on IETF WebDAV).

6 The system should provide facilities for extracting
time-specific views of the information system. Note
that this facility is inherent in the use of software
systems like CVS to manage all the information ob-
jects in the information system.

The only indirection required by the RTD approach
is that represented by the referent aggregation links.
This means that RTD-based information systems can be
implemented using the facilities of the XLink and
XPointer specifications.

SUMMARY
The referent tracking document version management
system relies on the following key components:

1 The creation and management of a referent track-
ing document for each ‘‘thing of interest’’ in a sys-
tem of documents where the referent tracking doc-
ument has the same filename for the life of the
information system.

2 The use of RCS or its equivalent to manage versions
of the RTD documents over time.

3 The consistent use of RTD documents as the initial
target of all references to things of interest.

The mechanism is not dependent on any particular
hyperlinking or addressing mechanism as long as the
mechanism used is equivalent to the HyTime facilities
used in the examples in this paper.

The problem of tracking changes through the pro-
cess of editing is probably unsolvable in the general case
and is therefore simply a fact of life. System implemen-
tors must carefully analyze the accuracy requirements
and work habits and patterns of systems in order to de-
velop appropriate authoring conventions and practices
for version identification and tracking. In particular, it is
important to distinguish the need to simply identify
changes from the need to relate different versions of the
same logical information object. The former can be sat-
isfied by existing differencing tools. The latter requires
a system like that described in this paper.

While the authors have demonstrated that the sys-
tem described here satisfies the requirements of com-
plete version management with respect to the integrity
of references, more experimentation is needed to un-
derstand how this type of approach works in practice and
how existing tools can be adapted to support this ap-
proach.

APPENDIX: FULL DECLARATIONS FOR ALL
EXAMPLES
The following declarations conform to the HyTime stan-
dard as corrected through TC1, still under development
as ISO/IEC JTC1/SC34 document N1957. In particular,
the location type ‘‘ENTLOC’’ was omitted from the stan-
dard as published. The PI-form of architecture use dec-
laration is defined in Amendment 1 to 10744:1997.

doc.dtd declaration set for non-RTD scenario:

<?IS10744 arch

name�"HyTime"

public-id�"ISO/IEC 10744:1997//NOTATION AFDR

ARCBASE Hypermedia/Time-based Structuring

Language (HyTime)//EN"

options�"hylink refloc loctype"



Version Management as Hypertext Application: Referent Tracking Documents

Markup Technologies ’99 197

doc-elem-form�"HyDoc"

arch-bridge-form�"HyBrid"

?>

<!ELEMENT doc

(p�)

>

<!ATTLIST doc

HyTime

NAME

#FIXED "HyDoc"

>

<!ELEMENT p

(#PCDATA |

xref)*

>

<!ATTLIST p

id

ID

#IMPLIED

HyTime

NAME

#FIXED "HyBrid"

>

<!ELEMENT xref

(#PCDATA)

>

<!ATTLIST xref

target

CDATA

#REQUIRED

doc

CDATA

#REQUIRED

loctype

CDATA

#FIXED "target IDLOC

doc ENTLOC"

rflocsrc

CDATA

#FIXED "target doc"

HyTime

NAME

#FIXED "hylink"

anchrole

CDATA

#FIXED "refmark target"

anchcstr

CDATA

#FIXED "self required"

>

doc.dtd declaration set for RTD scenario:

<?IS10744 arch

name�"HyTime"

public-id�"ISO/IEC 10744:1997//NOTATION AFDR

ARCBASE Hypermedia/Time-based Structuring

Language (HyTime)//EN"

options�"hylink refloc loctype"

doc-elem-form�"HyDoc"

arch-bridge-form�"HyBrid"

?>

<!ELEMENT doc

(p�)

>

<!ATTLIST doc

HyTime

NAME

#FIXED "HyDoc"

>

<!ELEMENT p

(#PCDATA |

xref)*

>

<!ATTLIST p

id

ID

#IMPLIED

HyTime

NAME

#FIXED "HyBrid"

>

<!ELEMENT xref

(#PCDATA)

>

<!ATTLIST xref

target

CDATA

#REQUIRED

loctype

CDATA

#FIXED "target ENTLOC"

HyTime

NAME

#FIXED "hylink"

anchrole

CDATA

#FIXED "refmark target"

anchcstr

CDATA

#FIXED "self required"

>

DTD declaration set for rtd.dtd:

<?IS10744 arch

name�"HyTime"

public-id�"ISO/IEC 10744:1997//NOTATION AFDR

ARCBASE Hypermedia/Time-based Structuring

Language (HyTime)//EN"

options�"hylink refloc loctype nmsploc"

doc-elem-form�"agglink"



W. Eliot Kimber, Steve Newcomb, and Peter Newcomb

198 Markup Technologies ’99

arch-bridge-form�"HyBrid"

?>

<!ELEMENT referent

(title,

nmsploc�)

>

<!ATTLIST referent

members

CDATA

#REQUIRED

loctype

CDATA

#FIXED "members IDLOC"

HyTime

NAME

#FIXED "agglink"

>

<!ELEMENT title

(#PCDATA)

>

<!ELEMENT nmsploc

(#PCDATA)

>

<!ATTLIST nmsploc

id

ID

#REQUIRED

locsrc

CDATA

#IMPLIED

namespc

(elements |

entities)

entities

loctype

CDATA

#FIXED "locsrc ENTLOC"

HyTime

NAME

#FIXED "nmsploc"

>

BIOGRAPHY
Eliot Kimber has been doing generic markup in one
form or another for going on twenty years. His first ex-
posure to SGML was IBM’s dear departed Dialog Tag
Language, for which he wrote a crude SGML parser in
REXX by reverse engineering document instances. It was
only later he discovered that not only was there a formal
standard for this pointy stuff but IBM supplied software
for processing it. Since that humble beginning, Eliot has

helped define the state of the generalized markup art,
first as an architect of IBM’s Information Development
Document Type (IBMIDDoc), as a co-editor of the
HyTime standard (with Charles Goldfarb, Steve New-
comb, and Peter Newcomb), and as a founding member
of the XML Working Group. Since 1994 Eliot has worked
as a systems integration consultant focusing on the ap-
plication of SGML, XML, HyTime, and related standards
to various industrial information management prob-
lems. Eliot is also involved in the STEP and SGML har-
monization effort, an attempt to define a robust and use-
ful bridge between the worlds of industrial product data
and SGML/XML-based information. On those rare oc-
casions when he is not trying to teach brain-dead soft-
ware to understand impossibly abstract standards, he is
a devoted husband and dog owner. In his spare time,
Eliot enjoys body boarding, hiking, and exploring the
joys of open-source software.

Steve Newcomb has been a lifelong champion of the
rights of data owners. Before embarking on a quixotic
but ultimately successful attempt to actually implement
the HyTime standard, Steve was a professor of music edu-
cation at Florida State University, where he got involved
with an attempt to define an SGML language for the
representation of music, which became the Standard
Music Description Language, ISO/IEC 10743, which led
to the development of the HyTime standard. Steve has
long been involved in standards development, first as an
editor of the SMDL and HyTime standards, as a partici-
pant in the various MID and IETM efforts over the years,
and then as a champion for and co-editor of the Topic
Map standard (ISO/IEC 13250:1999). Steve is the Pres-
ident and founder of TechnoTeacher, Inc., suppliers of
the GroveMinder� engine, an industrial-strength grove-
based information management system. When not strug-
gling to help the great unwashed understand the power
of the abstractions at his command, Steve is a devoted
husband and father. In his spare time, Steve enjoys play-
ing the piano, Star Trek� reruns, and swimming.

Peter Newcomb is the youngest member of the HyTime
editorial team and the principal architect of much of the
machinery defined in the HyTime standard. He is prin-
cipal architect and implementor of the GroveMinder�
system and one of the few people on the planet who
actually understands the SP source code. While less visi-
ble than his father within the standards community, Pete
has had a tremendous and profound influence on the
shape and details of a number of standards. When not
trying to make groves and HyTime safe for normal hu-
mans, Pete is a devoted husband and reef tank enthusi-
ast. In his spare time, Pete enjoys in-line skating, wind
surfing, and Descent.


